Parameter determination of support vector machine and feature selection using simulated annealing approach
نویسندگان
چکیده
Support vector machine (SVM) is a novel pattern classification method that is valuable in many applications. Kernel parameter setting in the SVM training process, along with the feature selection, significantly affects classification accuracy. The objective of this study is to obtain the better parameter values while also finding a subset of features that does not degrade the SVM classification accuracy. This study develops a simulated annealing (SA) approach for parameter determination and feature selection in the SVM, termed SA-SVM. To measure the proposed SA-SVM approach, several datasets in UCI machine learning repository are adopted to calculate the classification accuracy rate. The proposed approach was compared with grid search which is a conventional method of performing parameter setting, and various other methods. Experimental results indicate that the classification accuracy rates of the proposed approach exceed those of grid search and other approaches. The SA-SVM is thus useful for parameter determination and feature selection in the SVM. # 2007 Elsevier B.V. All rights reserved.
منابع مشابه
Microcanonical Annealing and Threshold Accepting for Parameter Determination and Feature Selection of Support Vector Machines
Support vector machine (SVM) is a popular classification technique with many diverse applications. Parameter determination and feature selection significantly influences the classification accuracy rate and the SVM model quality. This paper proposes two novel approaches based on: Microcanonical Annealing (MA-SVM) and Threshold Accepting (TA-SVM) to determine the optimal value parameter and the ...
متن کاملFeature Selection Using Multi Objective Genetic Algorithm with Support Vector Machine
Different approaches have been proposed for feature selection to obtain suitable features subset among all features. These methods search feature space for feature subsets which satisfies some criteria or optimizes several objective functions. The objective functions are divided into two main groups: filter and wrapper methods. In filter methods, features subsets are selected due to some measu...
متن کاملتعیین ماشینهای بردار پشتیبان بهینه در طبقهبندی تصاویر فرا طیفی بر مبنای الگوریتم ژنتیک
Hyper spectral remote sensing imagery, due to its rich source of spectral information provides an efficient tool for ground classifications in complex geographical areas with similar classes. Referring to robustness of Support Vector Machines (SVMs) in high dimensional space, they are efficient tool for classification of hyper spectral imagery. However, there are two optimization issues which s...
متن کاملStock Price Prediction using Machine Learning and Swarm Intelligence
Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...
متن کاملAnomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors
Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Appl. Soft Comput.
دوره 8 شماره
صفحات -
تاریخ انتشار 2008